Homogeneous symplectic manifolds of Poisson-Lie groups

نویسنده

  • P. Baguis
چکیده

Symplectic manifolds which are homogeneous spaces of Poisson-Lie groups are studied in this paper. We show that these spaces are, under certain assumptions, covering spaces of dressing orbits of the Poisson-Lie groups which act on them. The effect of the Poisson induction procedure on such spaces is also examined, thus leading to an interesting generalization of the notion of homogeneous space. Some examples of homogeneous spaces of Poisson-Lie groups are discussed in the light of the previous results. Key-words: Poisson-Lie groups, induction of Poisson actions, momentum mapping, homogeneous spaces MSC 2000: 53C15, 53D17, 53D20 1 e-mail: [email protected] 2 Research supported by the “Communauté française de Belgique”, through an “Action de Recherche Concertée de la Direction de la Recherche Scientifique”. 2 homogeneous symplectic manifolds of poisson-lie groups

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Hamiltonian Poisson actions

We propose a Poisson-Lie analog of the symplectic induction procedure, using an appropriate Poisson generalization of the reduction of symplectic manifolds with symmetry. Having as basic tools the equivariant momentum maps of Poisson actions, the double group of a Poisson-Lie group and the reduction of Poisson manifolds with symmetry, we show how one can induce a Poisson action admitting an equ...

متن کامل

A Note on Poisson Homogeneous Spaces

We identify the cotangent bundle Lie algebroid of a Poisson homogeneous space G/H of a Poisson Lie group G as a quotient of a transformation Lie algebroid over G. As applications, we describe the modular vector fields of G/H , and we identify the Poisson cohomology of G/H with coefficients in powers of its canonical line bundle with relative Lie algebra cohomology of the Drinfeld Lie algebra as...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Poisson structure and invariant manifolds on Lie groups

For a discrete mechanical system on a Lie group G determined by a (reduced) Lagrangian we define a Poisson structure via the pull-back of the Lie-Poisson structure on g∗ by the corresponding Legendre transform. The main result shown in this paper is that this structure coincides with the reduction under the symmetry group G of the canonical discrete Lagrange 2-form ωL on G×G. Its symplectic lea...

متن کامل

Symplectic Structures Associated to Lie-poisson Groups

The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of a Lie group are considered. For the natural Poisson brackets the symplectic leaves in these manifolds are classified and the corresponding symplectic forms are described. Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson groups. On leave of absence from LOMI, Fontanka 27, St.Petersburg, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001